Measure Theoretic Probability

نویسندگان

  • P.J.C. Spreij
  • S. G. Cox
چکیده

Preface In these notes we explain the measure theoretic foundations of modern probability. The notes are used during a course that had as one of its principal aims a swift introduction to measure theory as far as it is needed in modern probability, e.g. to define concepts as conditional expectation and to prove limit theorems for martingales. Everyone with a basic notion of mathematics and probability would understand what is meant by f (x) and P(A). In the former case we have the value of some function f evaluated at its argument. In the second case, one recognizes the probability of an event A. Look at the notations, they are quite similar and this suggests that also P is a function, defined on some domain to which A belongs. This is indeed the point of view that we follow. We will see that P is a function-a special case of a measure-on a collection of sets, that satisfies certain properties, a σ-algebra. In general, a σ-algebra Σ will be defined as a suitable collection of subsets of a given set S. A measure µ will then be a map on Σ, satisfying some defining properties. This gives rise to considering a triple, to be called a measure space, (S, Σ, µ). We will develop probability theory in the context of measure spaces and because of tradition and some distinguished features, we will write (Ω, F, P) for a probability space instead of (S, Σ, µ). Given a measure space we will develop in a rather abstract sense integrals of functions defined on S. In a probabilistic context, these integrals have the meaning of expectations. The general setup provides us with two big advantages. In the definition of expectations, we do not have to distinguish anymore between random variables having a discrete distribution and those who have what is called a density. In the first case, expectations are usually computed as sums, whereas in the latter case, Riemann integrals are the tools. We will see that these are special cases of the more general notion of Lebesgue integral. Another advantage is the availability of convergence theorems. In analytic terms, we will see that integrals of functions converge to the integral of a limit function, given appropriate conditions and an appropriate concept of convergence. In a probabilistic context, this translates to convergence of expectations of random variables. We will see many instances, …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME SIMILARITY MEASURES FOR PICTURE FUZZY SETS AND THEIR APPLICATIONS

In this work, we shall present some novel process to measure the similarity between picture fuzzy sets. Firstly, we adopt the concept of intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and picture fuzzy sets. Secondly, we develop some similarity measures between picture fuzzy sets, such as, cosine similarity measure, weighted cosine similarity measure, set-theoretic similar...

متن کامل

Merging of opinions in game-theoretic probability

This paper gives game-theoretic versions of several results on “merging of opinions” obtained in measure-theoretic probability and algorithmic randomness theory. An advantage of the game-theoretic versions over the measure-theoretic results is that they are pointwise, their advantage over the algorithmic randomness results is that they are non-asymptotic, but the most important advantage over b...

متن کامل

Prequential probability: game-theoretic = measure theoretic

This article continues study of the prequential framework for evaluating a probability forecaster. Testing the hypothesis that the sequence of forecasts issued by the forecaster is in agreement with the observed outcomes can be done using prequential notions of probability. It turns out that there are two natural notions of probability in the prequential framework: game-theoretic, whose idea go...

متن کامل

Neural representation of information measure in the primate premotor cortex.

Animals seek information to reduce their efforts to receive rewards and perform actions that enable them to gain more information. The ability of seeking information subserves higher cognition processes such as planning and reasoning. There exists limited information on how the brain measures and seeks information. In this study, I discuss results indicating that the brain quantifies informatio...

متن کامل

The generality of the zero-one laws

We prove game-theoretic generalizations of some well-known zero-one laws. Our proofs make the martingales behind the laws explicit, and our results illustrate how martingale arguments can have implications going beyond measure-theoretic probability.

متن کامل

Review of 642:621 Mathematical Finance I

A. Probability spaces, random variables. (Shreve, Chapter 1) In this course, risk-neutral pricing theory is formulated in the language ofmeasuretheoretic probability. To the aspiring quant, measure-theoretic probability might at first appear mysterious, overly abstract, and irrelevant to quantitative analysis. However, it provides a general and powerful way to express both the conceptual ideas ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013